Two novel racemic synthetic approaches to LTB_{4} and LTB_{3} methyl esters

Christine Gauthier, Dominique Castet, Yvan Ramondenc and Gérard Plé *

Université de Rouen, IRCOF, UMR 6014, F-76821 Mont Saint Aignan, France.
E-mail: Gerard.Ple@univ-rouen.fr; Fax: 33-2/35522971; Tel: 33-2/35522448
Received (in Cambridge, UK) 2nd October 2001, Accepted 21st November 2001
First published as an Advance Article on the web 18th December 2001

The formal racemic synthesis of LTB_{4} and LTB_{3} methyl esters $\mathbf{1}$ and $\mathbf{2}$ is reported by introducing in a one step-procedure the E, E, Z-conjugated trienic system provided by ($1 E, 3 E, 5 Z$)-1,6-dibromohexa-1,3,5-triene $\mathbf{3}$ and ($1 E, 3 E, 5 Z$)-1-bromo-7,7-diethoxyhepta-1,3,5-triene 4, respectively, as building blocks.

Introduction

Leukotriene $\mathrm{B}_{4}\left(\mathrm{LTB}_{4}\right)$ (Fig. 1), an important metabolite of arachidonic acid, ${ }^{1}$ biosynthesised via the 5 -lipoxygenase pathway, ${ }^{2}$ is one of the most potent inducers of chemotaxis, chemokinesis, aggregation and degranulation of leukocytes. Important roles in allergic, ${ }^{3 a}$ inflammatory ${ }^{4}$ and immunological reaction ${ }^{5}$ have been attributed to LTB_{4}. On the other hand, following an analogous 5 -lipoxygenase pathway, eicosa-5,8,11trienoic acid is metabolised in vivo into $\mathrm{LTB}_{3} .{ }^{6}$ The latter has also been reported to possess biological activities, similar to LTB $_{4}{ }^{7}$

Fig. 1
As a result of their physiological importance and limited availability from biological sources, a number of synthetic routes to $\mathrm{LTB}_{4}{ }^{8}$ and to $\mathrm{LTB}_{3}{ }^{8 d, 8 h, 9}$ have been described in the literature.

Herein, we report two new synthetic approaches to LTB_{4} and LTB_{3} as their methyl esters $\mathbf{1}$ and $\mathbf{2}$ based on the great reactivity and versatility of our reagent ($2 E, 4 E$)-5-bromopenta-2,4-dienal 5 (Scheme 1). ${ }^{10}$ Thus, as summarised in Scheme 1, it can be

Scheme 1
successfully used to yield diastereomerically pure ($1 E, 3 E, 5 Z$)1,6 -dibromohexa-1,3,5-triene ${ }^{10 a} 3$ and ($1 E, 3 E, 5 Z$)-1-bromo-

7,7-diethoxyhepta-1,3,5-triene ${ }^{11} 4$ (Scheme 1), following methodologies successfully developed in our group. ${ }^{10 a, 11}$
One observes that, as in the target leukotrienes, the trienic E, E, Z-conjugated system already exists in compounds $\mathbf{3}$ and $\mathbf{4}$; hence, they could be a priori seen as building blocks able to give access to the title methyl esters $\mathbf{1}$ and $\mathbf{2}$.
To the best of our knowledge, the syntheses of LTB_{4} and LTB_{3} by a stereocontrolled introduction of the E, E, Z conjugated trienic unit, in a one step procedure, have not been reported so far.

Results and discussion

Two synthetic strategies were imagined, based mainly on the ability of the proposed starting materials $3^{10 a, 12}$ and 4^{11} to afford lithio derivatives by stereocontrolled halogen-metal exchange reactions and subsequent treatment with an appropriate aldehyde.

Synthesis from ($1 E, 3 E, 5 Z$)-1,6-dibromohexa-1,3,5-triene 3

The $1 E, 3 E, 5 Z$-isomer of 1,6 -dibromohexa-1,3,5-triene 3 has been previously prepared by us, ${ }^{10 a}$ exploiting a Wittig reaction performed on ($2 E, 4 E$)-5-bromopenta-2,4-dienal ${ }^{10} 5$.

Moreover, we have previously demonstrated that the two bromine atoms linked at C-1, C-6 significantly exhibit different reactivity when 3 is involved in a halogen-metal exchange reaction ${ }^{10 a}$ or in a palladium-catalyzed cross-coupling process. ${ }^{13}$ This behaviour was considered of crucial importance since simple retrosynthetic disconnection revealed the availability of LTB_{4} and LTB_{3} from a $1 E, 3 E, 5 Z$-hexatriene dianion equivalent in reaction with two different aldehydes. Thus, the synthetic approaches to LTB_{4} and LTB_{3} methyl esters $\mathbf{1}$ and 2 were attempted as two successive selective bromine-lithium exchange reactions, followed by quenching of the reaction mixture with the required aldehyde (Scheme 2).

Indeed, a first bromine-lithium exchange reaction on pure $1 E, 3 E, 5 Z$-isomer 3, by treatment with tert-butyllithium in diethyl ether at $-75^{\circ} \mathrm{C}$, occurred with high selectivity on the bromine atom of the E double bond. The condensation with (3Z)-non-3-enal 6a (synthetic approach to LTB_{4} methyl esters 1) or nonanal $\mathbf{6 b}$ (synthetic approach to LTB_{3} methyl esters 2), afforded the desired monosubstituted compounds $7 \mathbf{a}$ and $7 \mathbf{b}$ in large excess over the side products $\mathbf{8 a}, 9 \mathbf{9}$ and $\mathbf{8 b}, 9 \mathbf{9}$, respectively. After optimisation of the reaction conditions and column chromatography, the expected monobrominated derivatives $7 \mathbf{a}$ and $\mathbf{7 b}$ and the by-products $\mathbf{8 a}, \mathbf{9 a}$ and $\mathbf{8 b}, \mathbf{9 b}$ were isolated pure in the molar proportions $7 \mathbf{a}: 8 \mathbf{a}: 9 \mathbf{a} 65: 8: 10$ and $7 \mathbf{b}: \mathbf{8 b}: 9 \mathbf{b}$

Scheme 2 Reagents and conditions: $i, \mathrm{Bu}^{t} \mathrm{Li}, \mathrm{Et}_{2} \mathrm{O},-75^{\circ} \mathrm{C}, 90 \mathrm{~min}$; (3Z)-non-3-enal $\mathbf{6 a}$ or nonanal $\mathbf{6 b}, 0^{\circ} \mathrm{C}, 90 \mathrm{~min}$.

Scheme 3 Reagents and conditions: $i, \mathrm{Bu}^{\prime} \mathrm{Li}, \mathrm{Et}_{2} \mathrm{O},-75^{\circ} \mathrm{C}, 90 \mathrm{~min}$; methyl 4-formylbutanoate $\mathbf{1 0}, 0^{\circ} \mathrm{C}, 60 \mathrm{~min}$.

56:10:10 (Scheme 2) and fully characterised. Discrimination between pure diastereomeric bromohydrins 7a vs. 8a and 7b $v s$. $\mathbf{8 b}$ and stereochemical analyses of all new compounds 7-9 were made by using ${ }^{1} \mathrm{H}$ NMR spectroscopy. The stereochemistry of the trienic system of compounds $\mathbf{7}-9$ has been determined from the J values of the different double bonds (for example, compound 7a: $J_{1,2}=7.1 ; J_{3,4}=13.5$ and $J_{5,6}=13.8 \mathrm{~Hz}$). All compounds $7-9$ were obtained from the starting material $\mathbf{3}$ with total retention of configuration.

Finally, we note that (3Z)-non-3-enal 6a was prepared in 91% yield by oxidation of the corresponding commer cially available (3Z)-non-3-en-1-ol by using the Dess-Martin procedure. ${ }^{14}$

Keeping in mind that the bromohydrins $\mathbf{7 a}, \mathbf{b}$ are useful intermediates in the syntheses of LTB_{4} and LTB_{3} methyl esters 1 and $\mathbf{2}$, respectively, the next step of the chemistry was straight forward. Thus, a second bromine-lithium exchange reaction was performed on pure isolated $\mathbf{7 a , b}$ followed by quenching with methyl-4-formylbutanoate ${ }^{15} \mathbf{1 0}$ (Scheme 3).

The LTB_{4} methyl esters 1 (as a non-separable diastereomeric mixture) were obtained and isolated in analytical purity after column chromatography in 51% yield (with respect to $7 \mathbf{a}$, overall yield 33% vs. starting material 3). We mention, however, the occurrence of the side acetylenic product 11, in 25% yield (from $7 a)$, presumably as the result of the dehydrobromination of $7 \mathbf{a}$ promoted by the $\mathrm{Bu}^{t} \mathrm{Li}$. This compound $\mathbf{1 1}$ has been isolated pure and fully analyzed.

Similar methodology carried out with 7b afforded the LTB $_{3}$ methyl esters 2 (as a non-separable diastereomeric mixture) in 60% yield (overall yield 34% with respect to 3).

The isolated pure LTB_{4} and LTB_{3} methyl esters $\mathbf{1}$ and $\mathbf{2}$ have been fully characterised using classical methods.

In our opinion, the above results reveal a simple and convenient route towards LTB_{4} and LTB_{3} precursors in a two-step
procedure from the readily available ($1 E, 3 E, 5 Z$)-1,6-dibromo-hexa-1,3,5-triene 3.

Synthesis via (1E,3E,5Z)-bromo-7,7-diethoxyhepta-1,3,5-triene

 4In this second synthetic strategy, the starting material was $(2 E, 4 E)$-5-bromopenta-2,4-dienal ${ }^{10} 5$ (Schemes 1 and 4). As the chemistry depicted in Scheme 4 suggests, the crucial step should be the Wittig homologation of aldehyde 5 promoted by the diethyl acetal of $\mathbf{1 3}$. Then, in order to prepare the diethoxy derivative 4 , the early stage of our research was inspired by the work of Bestmann ${ }^{16}$ concerning the diastereoselective synthesis of α, β-unsaturated aldehydes with high Z stereocontrol. However, in order to optimise the formation of 4 , we had to modify Bestmann's experimental protocol ${ }^{16}$ (Scheme 4).

Scheme 4 Reagents and conditions: i, EtBr, reflux, 2 days; ii, 5, EtONa, THF, $-10^{\circ} \mathrm{C}$, reflux, 12 h .

Surprisingly, we note that attempts at condensing directly the aldehyde $\mathbf{5}$ with the diethyl acetal of $\mathbf{1 3}$ (prepared from $\mathbf{1 2}$ and EtONa) failed since non-reproducible results were obtained. To ensure the accurate formation of $\mathbf{4}$, we had to introduce the
non-enolisable aldehyde 5 to the reaction mixture containing the phosphonium salt $\mathbf{1 2}$ prior to EtONa. The addition of the latter generated in situ the diethyl acetal of $\mathbf{1 3}$, which condensed with 5 , as soon as it had formed. Thus, the aldehyde 5 added to the phosphonium enol ether salt 12 (available from the Trippett and Walker ${ }^{17}$ phosphorylide reagent 13), followed by sodium etharolate (EtONa), afforded the new ω-bromo conjugated trienic diethyl acetal $\mathbf{4}$ in 70% yield (with respect to $\mathbf{5}$). The total $1 E, 3 E, 5 Z$ stereochemistry of the latter, seen as the key intermediate, was revealed by means of ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Next, according to a bromine-lithium exchange reaction (treatment with $\mathrm{Bu}^{4} \mathrm{Li}$ in $\mathrm{Et}_{2} \mathrm{O}$ at $-75^{\circ} \mathrm{C}$) performed on pure isolated compound $\mathbf{4}$ followed by quenching with ($3 Z$)-non-3enal $\mathbf{6 a}$ or nonanal $\mathbf{6 b}$, the desired hydroxytrienic diethyl acetals 14a,b were obtained in 76 and 78% yield (from 4), after column chromatographic purification, with total retention of configuration (Scheme 5).

Hydrolysis of 14a,b under mild acidic conditions yielded the corresponding crude aldehydes $\mathbf{1 5 a}, \mathbf{b}$ in (almost) quantitative yield (Scheme 5). The unstable compounds 15a,b (isomerisation into the corresponding conjugated aldehydes with an all E configuration) have been used as crude product.

Finally, an ω-butanoate homologation was performed on the aldehyde $\mathbf{1 5 b}$ by using trimethyl 4 -lithioorthobutanoate, ${ }^{18}$ to afford the LTB_{3} methyl esters 2 in 52% yield (from 15b) after mild acidic hydrolysis (Scheme 6).
A similar procedure was previously reported by Taylor ${ }^{8 k}$ for the synthesis of LTB $_{4}$ methyl esters $\mathbf{1}$ by condensation of the same reagent with a silylated trienic aldehyde analogous to our precursor 15a.

Conclusions

In conclusion, we have succeeded in developing two new formal synthetic approaches to LTB_{4} and LTB_{3} methyl esters $\mathbf{1}$ and $\mathbf{2}$ by introduction of the conjugated trenic system in a one-step E, E, Z-stereocontrolled pathway.

From ($1 E, 3 E, 5 Z$)-1,6-dibromohexa-1,3,5-triene 3 the LTB $_{4}$ and LTB $_{3}$ methyl esters $\mathbf{1}$ and $\mathbf{2}$ were obtained in two steps (in 33 and 34% overall yield respectively, vs. 3) and from ($2 E, 4 E$)-5-bromopenta-2,4-dienal 5 via the new reagent ($1 E, 3 E, 5 Z$)-1-bromo-7,7-diethoxyhepta-1,3,5-triene $\mathbf{4}$, the LTB $_{3}$ methyl esters 2 were obtained in four steps (overall yield 28% vs. 5).

These new processes should be easily applicable to the synthesis of a wide variety of structural analogs. The synthesis with stereocontrol of the hydroxyallylic chiral centres is under investigation.

Experimental

General

IR spectra were recorded on a Perkin-Elmer 16 PC FT-IR spectrometer for samples as thin films. NMR spectra were recorded on a Bruker AC 200 MHz , Bruker Avance DPX 300 MHz , or

15b
LTB_{3} methyl esters
Scheme 6 Reagents and conditions: $i, \mathrm{Li}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{C}(\mathrm{OMe})_{3}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$, 120 min .

Bruker AM 400 MHz with Aspect 3000 calculator. CDCl_{3} or $\mathrm{C}_{6} \mathrm{D}_{6}$ was used as solvent. No SiMe_{4} was added; rather, shifts were referenced to the solvent line (chemical shifts δ in ppm and coupling constants J in Hz). Mass spectra were performed on an ATI-Unicam Automass apparatus, fitted (or not) with a GC-mass coupling (high-resolution J\&W column, $30 \mathrm{~m}, 0.25$ mm ID, flow rate: $1.2 \mathrm{~mL} \mathrm{~min}{ }^{-1}$), or on a JEOL JMS AX-500 spectrometer. Analytical TLC was performed on Kieselgel 60F-$254-0.25 \mathrm{~mm}$ plates and developed with UV (250 nm) or phosphomolybdic acid. Products were purified by silica gel column chromatography (SDS Company, 230-400 mesh). All reactions were carried out under dry Ar. Microanalyses were carried out in IRCOF Microanalysis Laboratory of Rouen. Melting points were measured on a Reichert-Jung microscope apparatus. Solvents were purified according to standard procedures.

(1Z,3E,5E,9Z)-1-Bromo-7-hydroxy-pentadeca-1,3,5,9-tetraene 7a

To a solution of ($1 E, 3 E, 5 Z$)-1,6-dibromohexa-1,3,5-triene ${ }^{10 a, b}$ $3(0.240 \mathrm{~g}, 1.00 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$, cooled to $-75^{\circ} \mathrm{C}$, under argon was added a solution of $\mathrm{Bu}^{t} \mathrm{Li}(1.07 \mathrm{~mL}$ of a 1.7 M solution in pentane; 1.80 mmol) slowly with a syringe. The reaction mixture was stirred for 90 min and a solution of ($3 Z$)-non-3-enal ${ }^{8 j} \mathbf{6 a}(0.140 \mathrm{~g}, 1.00 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ was introduced. The reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and was stirred for 90 min before treatment with water $(2 \mathrm{~mL})$. After extraction with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. By silica gel column chromatography [pentane- $\left.\mathrm{Et}_{2} \mathrm{O}(80: 20 \mathrm{v} / \mathrm{v})\right]$ we isolated and identified the expected monosubstituted compound $7 \mathrm{a}(0.195 \mathrm{~g}, 65 \%$) as a yellow oil, compound $8 \mathbf{a}$ ($0.025 \mathrm{~g}, 8 \%$, yellow oil) and compound $9 \mathrm{a}(0.035 \mathrm{~g}, 10 \%$, yellow oil).

Compound 7a. $v_{\max } / \mathrm{cm}^{-1} 3114,3050,2976,1630,1487,1047$ and $688 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.86\left(3 \mathrm{H}, \mathrm{t}, J 6.7,15-\mathrm{H}_{3}\right), 1.15-$

Scheme 5 Reagents and conditions: $i, \mathrm{Bu}^{t} \mathrm{Li}^{\prime}, \mathrm{Et}_{2},-75^{\circ} \mathrm{C}, 90 \mathrm{~min}$; (3Z)-non-3-enal $\mathbf{6 a}$ or nonanal $\mathbf{6 b}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}$; ii, PTSA, acetone, water, $0^{\circ} \mathrm{C}, 45 \mathrm{~min}$.
$1.35\left(6 \mathrm{H}, \mathrm{m}, 12-14-\mathrm{H}_{2}\right), 2.00\left(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{2}\right), 2.28(2 \mathrm{H}, \mathrm{m}$, $\left.8-\mathrm{H}_{2}\right), 4.00(1 \mathrm{H}, \mathrm{q}, J 6.4$ and $7.0,7-\mathrm{H}), 5.30-5.45(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}$ and $10-\mathrm{H}), 5.60(1 \mathrm{H}$, dd, $J 6.4$ and $13.8,6-\mathrm{H}), 5.80(1 \mathrm{H}, \mathrm{d}, J 7.1$, $1-\mathrm{H}), 6.10(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{H}), 6.25(1 \mathrm{H}, \mathrm{dd}, J 7.1$ and 10.4 , $2-\mathrm{H})$ and $6.60(1 \mathrm{H}, \mathrm{dd}, J 10.4$ and $13.5,3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right)$ 14.62 (C-15), 23.26 (C-14), 28.06 (C-11), 29.97 (C-12), 32.11 (C-13), 35.87 (C-8), 72.07 (C-7), 108.42 (C-1), 124.90 (C-9), 128.14 (C-3), 132.80 (C-4), 133.23 (C-2), 135.03 (C-10), 135.18 (C-5) and 139.07 (C-6) (Found: C, 60.38; H, 7.59. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{BrO}$ requires $\mathrm{C}, 60.21 ; \mathrm{H}, 7.75 \%$).
($1 E, 3 E, 5 Z, 9 Z$)-1-Bromo-7-hydroxypentadeca-1,3,5,9-tetraene 8a. $v_{\text {max }} \mathrm{cm}^{-1} 3134,3060,2985,1630,1055$ and $670 ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.80(3 \mathrm{H}, \mathrm{t}, J 6.7,15-\mathrm{H}), 1.10-1.40(6 \mathrm{H}, \mathrm{m}, 12-14-$ $\left.\mathrm{H}_{2}\right), 2.00\left(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{2}\right), 2.40\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right), 4.40(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H})$, $5.30-5.50(4 \mathrm{H}, \mathrm{m}, 5-6-\mathrm{H}$ and $9-10-\mathrm{H}), 5.62(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.78$ $(1 \mathrm{H}, \mathrm{d}, J 13.6,1-\mathrm{H}), 6.30(1 \mathrm{H}, \mathrm{dd}, J 11.7$ and $15.1,4-\mathrm{H})$ and $6.52(1 \mathrm{H}, \mathrm{dd}, J 10.9$ and $13.6,2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 14.23$ (C-15), 21.00 (C-14), 27.72 (C-11), 28.64 (C-12), 31.89 (C-13), 35.66 (C-8), 67.93 (C-7), 109.65 (C-1), 124.79 (C-9), 128.88 (C-5), 129.07 (C-4), 131.23 (C-2), 135.38 (C-10), 135.90 (C-3) and 137.72 (C-6) (Found: $\mathrm{C}, 60.38 ; \mathrm{H}, 7.59 . \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{BrO}$ requires C, $60.21 ; \mathrm{H}, 7.75 \%)$.

(6Z,10E,12E, 14Z,18Z)-9,16-Dihydroxytetraeicosa-6,10,12,

 14,18-pentane 9a. $v_{\max } / \mathrm{cm}^{-1} 3346,2920,1654,1466$ and 1032; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.88\left(6 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{3}\right.$ and $\left.24-\mathrm{H}_{3}\right), 1.15-1.34$ $\left(12 \mathrm{H}, \mathrm{m}, 2-4-\mathrm{H}_{2}, 21-23-\mathrm{H}_{2}\right), 2.00\left(4 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right.$ and $\left.20-\mathrm{H}_{2}\right)$, $2.30\left(4 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right.$ and $\left.17-\mathrm{H}_{2}\right), 4.10(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 4.53(1 \mathrm{H}, \mathrm{m}$, $16-\mathrm{H}), 5.36-5.60(5 \mathrm{H}, \mathrm{m}, 6-7-\mathrm{H}, 15-\mathrm{H}$ and $18-19-\mathrm{H})$, $5.67(1 \mathrm{H}$, dd, $J 5.9$ and $15.0,10-\mathrm{H}), 6.02(1 \mathrm{H}, \mathrm{t}, J 11.5,14-\mathrm{H}), 6.14(1 \mathrm{H}$, dd, $J 10.8$ and $14.7,12-\mathrm{H}), 6.31(1 \mathrm{H}, \mathrm{dd}, J 10.8$ and $15.0,11-\mathrm{H})$ and $6.55(1 \mathrm{H}$, dd, $J 11.5$ and $14.7,13-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right)$ 14.46 ($\mathrm{C}-1$ and $\mathrm{C}-24$), 23.12, 29.86, 31.99 (C-2-4 and C-21-23), 27.94 (C-5 or C-20), 27.96 (C-20 or C-5), 36.07 (C-17 or C-8), 36.19 (C-8 or C-17), 68.15 (C-16), 72.20 (C-9), 125.25, 125.28, 133.25, 133.36, 134.73 (C-6-7, C-15 and C-18-19) 128.31 (C-13), $130.03(\mathrm{C}-14), 130.42(\mathrm{C}-11), 134.38(\mathrm{C}-12)$ and 137.70 $(\mathrm{C}-10) ; m / z\left(\mathrm{CI}, \mathrm{CH}_{4}\right) 389\left(\mathrm{M}^{+}+29.1 \%\right), 361\left(\mathrm{M}^{+}+1,3\right), 343$ (100), 325 (32), 249 (80), 231 (60), 189 (60), 137 (23) and 69 (28).
($1 Z, 3 E, 5 E$)-1-Bromo-7-hydroxypentadeca-1,3,5-triene 7b

According to the procedure described for preparation of compound $7 \mathbf{a}$, from ($1 E, 3 E, 5 Z$)-1,6-dibromo-1,3,5-triene ${ }^{10 a, b}$ $3(0.240 \mathrm{~g}, 1.00 \mathrm{mmol})$ and using a solution of nonanal $\mathbf{6 b}$ $(0.140 \mathrm{~g}, 1.00 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ we isolated and identified, after silica gel column chromatography [pentane- $\mathrm{Et}_{2} \mathrm{O}$ ($80: 20 \mathrm{v} / \mathrm{v}$)], compound $7 \mathbf{b}(0.170 \mathrm{~g}, 56 \%)$ as a yellow solid, compound $8 \mathbf{b}$ ($0.030 \mathrm{~g}, 10 \%$, yellow oil) and compound 9b $(0.035 \mathrm{~g}, 10 \%$, yellow oil).

Compound 7b. Mp 32-33 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 3184,3060$, 2968, $1650,1465,1060$ and $680 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.90(3 \mathrm{H}, \mathrm{t}, J 6.8$, $\left.15-\mathrm{H}_{3}\right), 1.20-1.40\left(12 \mathrm{H}, \mathrm{m}, 9-14-\mathrm{H}_{2}\right), 1.42\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right), 3.86$ $\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 5.63(1 \mathrm{H}, \mathrm{dd}, J 6.4$ and $14.4,6-\mathrm{H}), 5.79(1 \mathrm{H}, \mathrm{d}$, $J 7.1,1-\mathrm{H}), 6.10(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{H}), 6.26(1 \mathrm{H}, \mathrm{dd}, J 6.8$ and $10.4,2-\mathrm{H})$ and $6.61(1 \mathrm{H}, \mathrm{dd}, J 10.5$ and $14.0,3-\mathrm{H}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; $\mathrm{C}_{6} \mathrm{D}_{6}$) 14.33 (C-15), 19.61, 23.05, 25.73, 29.98, 31.93 (C-9-14), 37.58 (C-8), 72.25 (C-7), 108.28 (C-1), 128.85 (C-3), 129.60 (C-4), 132.75 (C-2), 136.34 (C-5) and 139.88 (C-6) (Found: C, 59.64; $\mathrm{H}, 8.22 . \mathrm{C}_{15} \mathrm{H}_{25} \mathrm{BrO}$ requires $\left.\mathrm{C}, 59.80 ; \mathrm{H}, 8.36 \%\right)$.
(1E,3E,5Z)1-Bromo-7-hydroxypentadeca-1,3,5-triene 8b. $v_{\text {max }} / \mathrm{cm}^{-1} 3204,2922,1686,1640,1466,1090$ and $990 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.90\left(3 \mathrm{H}, \mathrm{t}, J 6.8,15-\mathrm{H}_{3}\right), 1.20-1.40(12 \mathrm{H}, \mathrm{m}, 9-14-$ $\left.\mathrm{H}_{2}\right), 1.45\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right), 4.30\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 5.43(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$, $5.68(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and $15.4,3-\mathrm{H}), 5.91(1 \mathrm{H}, \mathrm{d}, J 13.5,1-\mathrm{H})$, $6.32(1 \mathrm{H}$, dd, $J 11.6$ and $14.9,4-\mathrm{H}), 6.54(1 \mathrm{H}$, dd, $J 11.2$ and $13.5,2-\mathrm{H})$ and $6.61(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 14.01$ (C-15), 22.75, 25.47, 29.38, 29.69, 31.90 (C-9-14), 37.66 (C-8),
67.71 (C-7), 110.00 (C-1), 128.53 (C-5), 132.45 (C-4), 136.46 (C-6), $137.40(\mathrm{C}-2)$ and $139.57(\mathrm{C}-3) ; m / z\left(\mathrm{CI}, \mathrm{CH}_{4}\right) 331-329$ $\left(\mathrm{M}^{+}+29,6 \%\right), 303-301\left(\mathrm{M}^{+}+1,1\right), 285-283(9), 221(10), 203$ (18) and 174 (100) (Found: C, 59.57; H, 8.41. $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{BrO}$ requires $\mathrm{C}, 59.80 ; \mathrm{H}, 8.36 \%)$.

(10E,12E,14Z)-9,16-Dihydroxytetraeicosa-10,12,14-triene

9b. $v_{\text {max }} / \mathrm{cm}^{-1} 3328,2954,1680,1650,1464,1056$ and $994 ;$ $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.80\left(6 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{3}\right.$ and $\left.24-\mathrm{H}_{3}\right), 1.00-1.20$ $\left(24 \mathrm{H}, \mathrm{m}, 2-7-\mathrm{H}_{2}\right.$ and $\left.18-23-\mathrm{H}_{2}\right), 1.25\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right), 1.40(2 \mathrm{H}$, $\left.\mathrm{m}, 17-\mathrm{H}_{2}\right), 4.05(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 4.55(1 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}), 5.45(1 \mathrm{H}, \mathrm{t}$, $J 9.8,15-\mathrm{H}), 5.65(1 \mathrm{H}, \mathrm{dd}, J 6.3$ and $14.5,10-\mathrm{H}), 6.00(1 \mathrm{H}$, $\mathrm{t}, J 11.2,14-\mathrm{H}), 6.15(1 \mathrm{H}, \mathrm{dd}, J 10.8$ and $14.0,12-\mathrm{H}), 6.25$ $(1 \mathrm{H}, \mathrm{dd}, J 10.7$ and $14.2,11-\mathrm{H})$ and $6.55(1 \mathrm{H}, \mathrm{dd}, J 11.8$ and $13.7,13-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 14.53(\mathrm{C}-1$ and $\mathrm{C}-24), 22.95$, $23.25,26.03,29.42,30.62,32.44$ (C-2-7 and C-18-23), 30.24 (C-8), 30.96 (C-17), 68.25 (C-16), 72.64 (C-9), 128.50 (C-13), 129.81 (C-14), 130.23 (C-11), 134.36 (C-12), 135.55 (C-15) and $138.55(\mathrm{C}-10) ; m / z(\mathrm{EI}) 364\left(\mathrm{M}^{+}, 1 \%\right), 346\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}_{3}\right), 328$ $\left(\mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}_{3}\right), 141(74), 95(34)$ and $57(100) ; m / z\left(\mathrm{CI}, \mathrm{CH}_{4}\right) 347$ $\left(\mathrm{M}^{+}+1-\mathrm{H}_{2} \mathrm{O}, 100 \%\right)$.

Methyl ($6 Z, 8 E, 10 E, 14 Z$)-5,12-dihydroxyeicosa-6,8,10,14tetraenoate 1: $\mathbf{L T B}_{4}$ methyl esters

Under argon, a solution of $\mathrm{Bu}^{t} \mathrm{Li}(1.80 \mathrm{~mL}$ of a 1.79 M solution in pentane; 2.80 mmol) was added to a solution of compound $7 \mathrm{a}(0.22 \mathrm{~g}, 1.00 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$, cooled to $-75^{\circ} \mathrm{C}$. The reaction mixture was stirred for 90 min and a solution of methyl 4-formylbutanoate ${ }^{15} \mathbf{1 0}(0.10 \mathrm{~g}, 1.00 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}$ $(2 \mathrm{~mL})$ was introduced. The reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 60 min before treatment with water $(2 \mathrm{~mL})$. After extraction with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. By silica gel column chromatography $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}(80: 20 \mathrm{v} / \mathrm{v})\right]$ we isolated and identified the LTB_{4} methyl esters $\mathbf{1}(0.13 \mathrm{~g}, 51 \%)$ as a yellow oil, and the acetylenic derivative $\mathbf{1 1}(0.06 \mathrm{~g}, 25 \%$, yellow oil).

Compound 1: LTB $_{4}$ methyl esters. $v_{\text {max }} / \mathrm{cm}^{-1} 3423,2980,1755$, 1642, 1487, 1084 and $968 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.87(3 \mathrm{H}, \mathrm{t}$, $J 6.6,20-\mathrm{H}_{3}$), 1.21-1.37 (6H, m, 17-19-H2), 1.50-1.75 ($6 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}_{2}, 4-\mathrm{H}_{2}$, and $\left.2 \times \mathrm{OH}\right), 2.02\left(2 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}_{2}\right), 2.33(4 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}_{2}$ and $\left.13-\mathrm{H}_{2}\right), 3.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.20(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 4.55$ $(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.35(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $14-\mathrm{H}), 5.56(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H})$, $5.75(1 \mathrm{H}, \mathrm{dd}, J 6.0$ and $14.7,11-\mathrm{H}), 6.06(1 \mathrm{H}, \mathrm{t}, J 11.3,7-\mathrm{H})$, $6.15-6.35(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}$ and $10-\mathrm{H})$ and $6.47(1 \mathrm{H}$, dd, $J 11.7$ and $13.5,8-\mathrm{H}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.94(\mathrm{C}-20), 20.34(\mathrm{C}-3), 22.44$ (C-19), 27.31 (C-16), 29.16 (C-17), 31.39 (C-18), 33.69 (C-2), $35.20(\mathrm{C}-13), 36.60(\mathrm{C}-4), 51.46\left(\mathrm{OCH}_{3}\right), 67.46(\mathrm{C}-5), 71.74$ (C-12), 123.91 (C-14), 127.32 (C-8), 130.08 (C-7 and $\mathrm{C}-10$), 133.51 (C-6), 133.84 (C-9), 133.94 (C-15), 136.69 (C-11) and 173.94 (C-1); m / z (EI) 333 (${ }^{+}-\mathrm{OH}, 7 \%$), 315 ($10, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}$ $-\mathrm{OH}), 301$ (9), 221 (12), 189 (14), 131 (25), 99 (68) and 61 (100) (Found: C, 71.74; H, 9.92. $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{4}$ requires C, 71.96; H, 9.78%).

Methyl (8E,10E,14Z)-5,12-dihydroxyeicosa-8,10,14-trien-6ynoate 11. $v_{\text {max }} / \mathrm{cm}^{-1} 3490,3012,2954,2851,1738,1456,1030$ and $986 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.82\left(3 \mathrm{H}, \mathrm{t}, J 6.5,20-\mathrm{H}_{3}\right), 1.20-$ $1.40\left(6 \mathrm{H}, \mathrm{m}, 17-19-\mathrm{H}_{2}\right), 1.70-1.80\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right.$ and $\left.4-\mathrm{H}_{2}\right), 2.00$ $\left(2 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}_{2}\right), 2.20-2.36\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right.$ and $\left.13-\mathrm{H}_{2}\right), 3.62(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 4.17(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 4.50(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.30(1 \mathrm{H}, \mathrm{m}$, $15-\mathrm{H}), 5.50-5.62(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$ and $14-\mathrm{H}), 5.78(1 \mathrm{H}, \mathrm{dd}, J 6.0$ and $15.2,11-\mathrm{H}), 6.24(1 \mathrm{H}, \mathrm{dd}, J 10.8$ and $15.2,10-\mathrm{H})$ and 6.51 $(1 \mathrm{H}, \mathrm{dd}, J 10.8$ and $15.5,9-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.02$ (C-20), 20.53 (C-3), 22.51 (C-19), 27.37 (C-16), 29.22 (C-17), 31.45 (C-18), 33.52 (C-2), 35.19 (C-13), 36.97 (C-4), 51.58 $\left(\mathrm{OCH}_{3}\right), 62.41(\mathrm{C}-5), 71.52(\mathrm{C}-12), 84.05(\mathrm{C}-6), 92.28(\mathrm{C}-7)$, 110.60 (C-8), 123.81 (C-14 or C-15), 129.13 (C-10), 134.06 (C-15 or C-14), 138.29 (C-11), 141.39 (C-9), and $173.93(\mathrm{C}-1)$;
$m / z\left(\mathrm{CI}, \mathrm{CH}_{4}\right) 377\left(\mathrm{M}^{+}+29,13 \%\right), 349\left(\mathrm{M}^{+}+1,8\right), 331(100)$, 313 (38), 299 (84), 219 (50) and 177 (23) (Found: C, 72.54; H, 9.12. $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{4}$ requires C, $72.38 ; \mathrm{H}, 9.26 \%$).

Methyl ($6 Z, 8 E, 10 E$)-5,12-dihydroxyeicosa-6,8,10-trienoate 2: $\mathbf{L T B}_{3}$ methyl esters

In the same manner as described for the preparation of the LTB_{4} methyl esters $\mathbf{1}$, from ($1 Z, 3 E, 5 E$)-1-bromo-7-hydroxy-pentadeca-1,3,5-triene $7 \mathbf{b}$ we isolated and identified, after silica gel column chromatography $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}(80: 20 \mathrm{v} / \mathrm{v})\right]$, the LTB_{3} methyl esters $2(0.14 \mathrm{~g}, 60 \%)$ as a colourless oil. $\delta_{\text {max }}-\mathrm{cm}^{-1} 3436,2924,1742,1634,1442,1074$ and $998 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.82\left(3 \mathrm{H}, \mathrm{t}, J 6.3,20-\mathrm{H}_{3}\right), 1.15-1.70(20 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}_{2}, 4-\mathrm{H}_{2}, 13-19-\mathrm{H}$ and $\left.2 \times \mathrm{OH}\right), 2.30\left(2 \mathrm{H}, \mathrm{t}, J 7.3,2-\mathrm{H}_{2}\right), 3.61$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.10(1 \mathrm{H}, \mathrm{q}, J 6.5,12-\mathrm{H}), 4.53(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.36$ $(1 \mathrm{H}, \mathrm{t}, J 10.3,6-\mathrm{H}), 5.70(1 \mathrm{H}, \mathrm{dd}, J 6.2$ and $15.0,11-\mathrm{H}), 6.02$ $(1 \mathrm{H}, \mathrm{t}, J 11.3,7-\mathrm{H}), 6.20(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}$ and $10-\mathrm{H})$ and $6.43(1 \mathrm{H}$, dd, $J 10.9$ and $15.0,8-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.02(\mathrm{C}-20)$, 20.74, 22.59, 25.34, 29.20, 29.48, 29.51, 30.26, 31.81 and 37.28 (C-3, C-4 and C-13-19), 33.77 (C-2), $51.44\left(\mathrm{OCH}_{3}\right), 67.45$ (C-12), 72.21 (C-5), 127.29 (C-10 or C-9), 129.98 (C-8 and C-10 or C-9), 133.72 (C-7), 134.02 (C-6), 137.69 (C-11) and 173.94 (C-1); m / z (EI) 334 (${ }^{+}-\mathrm{H}_{2} \mathrm{O}, 2 \%$), 303 (2), 219 (5), 161 (12), 129 (94) and 91 (100) (Found: C, 71.69; H, 10.08. $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{4}$ requires $\mathrm{C}, 71.59 ; \mathrm{H}, 10.23 \%$).

($1 E, 3 E, 5 Z$)-1-Bromo-7,7-diethoxyhepta-1,3,5-triene 4

Under argon, a solution of ($2 E, 4 E$)-5-bromopenta-2,4dienal ${ }^{10 a, b} 5(0.15 \mathrm{~g}, 0.93 \mathrm{mmol})$ in dry THF $(4 \mathrm{~mL})$ was added to a solution of (2-ethoxyvinyl)triphenylphosphonium bromide ${ }^{16} \mathbf{1 2}(0.96 \mathrm{~g}, 2.33 \mathrm{mmol})$ in dry THF (30 mL), at room temperature. To the solution cooled to $-10^{\circ} \mathrm{C}$, were added EtONa ($0.30 \mathrm{~g}, 4.41 \mathrm{mmol}$) and EtOH $(0.25 \mathrm{~mL})$. The reaction mixture was allowed to warm to room temperature and then was heated at reflux for 12 h , filtered on Celite, and concentrated. After silica gel column chromatography [light petroleum (distilled $50-65^{\circ} \mathrm{C}$)- $\mathrm{Et}_{2} \mathrm{O}(70: 30 \mathrm{v} / \mathrm{v}$)] we isolated and identified compound $4(0.17 \mathrm{~g}, 70 \%)$ as a yellow oil, $v_{\max } / \mathrm{cm}^{-1} 3062$, 2974, 1608, 1562, 1322, 1118 and 992; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 1.10$ $\left(6 \mathrm{H}, \mathrm{t}, J 7.0,2 \times \mathrm{CH}_{3}\right), 3.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.57(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.30(1 \mathrm{H}, \mathrm{d}, J 5.8,7-\mathrm{H}), 5.62(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and $14.8,3-\mathrm{H}), 5.66(1 \mathrm{H}, \mathrm{dd}, J 5.8$ and $10.8,6-\mathrm{H}), 5.87(1 \mathrm{H}, \mathrm{d}$, $J 13.6,1-\mathrm{H}), 5.88(1 \mathrm{H}, \mathrm{t}, J 11.2,5-\mathrm{H}), 6.49(1 \mathrm{H}, \mathrm{dd}, J 11.4$ and $13.8,4-\mathrm{H})$ and $6.54(1 \mathrm{H}, \mathrm{dd}, J 12.0$ and $13.6,2-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) 15.54\left(\mathrm{CH}_{3}\right), 60.11\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 98.07(\mathrm{C}-7), 110.20$ (C-1), 129.05 (C-4), 130.82 (C-6), 131.22 (C-2), 132.06 (C-5) and $137.64(\mathrm{C}-3) ; m / z$ (EI) 260-262 (M $\left.{ }^{+}, 7 \%\right), 215-217(21), 181$ (6), 159 (5), 136 (28), 107 (29) and 79 (100) (Found: C, 50.59; H, 6.56. $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{BrO}_{2}$ requires C, $50.72 ; \mathrm{H}, 6.65 \%$).

(2Z,4E,6E,10Z)-1,1-Diethoxyhexadeca-2,4,6,10-tetraen-8-ol 14a

Under argon, a solution of $\mathrm{Bu}^{t} \mathrm{Li}(0.6 \mathrm{~mL}$ of a 1.7 m solution in pentane; 1.02 mmol) was added to a solution of compound $\mathbf{4}$ $(0.15 \mathrm{~g}, 0.58 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$, cooled to $-75^{\circ} \mathrm{C}$. The reaction mixture was stirred for 90 min and a solution of (3Z)-non-3-enal ${ }^{8 j} \mathbf{6 a}(0.20 \mathrm{~g}, 1.43 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was introduced. The reaction mixture was stirred for 2 h and then warmed to $0{ }^{\circ} \mathrm{C}$, before treatment with water (3 mL). After extraction with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. By silica gel column chromatography [light petroleum (distilled $\left.50-65^{\circ} \mathrm{C}\right)-\mathrm{Et}_{2} \mathrm{O} 50: 50(\mathrm{v} / \mathrm{v})$] we have isolated and identified the compound $\mathbf{1 4 a}(0.14 \mathrm{~g}, 76 \%)$ as a yellow oil. $\nu_{\text {max }} / \mathrm{cm}^{-1} 3428,2956,1628,1456,1330,1126$ and $999 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.85\left(3 \mathrm{H}, \mathrm{t}, J 7.1,16-\mathrm{H}_{3}\right), 1.10(6 \mathrm{H}, \mathrm{t}$, $\left.J 7.0,2 \times \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.24\left(7 \mathrm{H}, \mathrm{m}, 13-15-\mathrm{H}_{2}\right.$ and OH$), 1.98$ $\left(2 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}_{2}\right), 2.28\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}\right), 3.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$,
$3.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.07(1 \mathrm{H}, \mathrm{q}, J 6.0,8-\mathrm{H}), 5.37(1 \mathrm{H}, \mathrm{d}$, $J 5.9,1-\mathrm{H}), 5.47(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}$ and $11-\mathrm{H}), 5.59(1 \mathrm{H}, \mathrm{dd}, J 5.9$ and $11.1,2-\mathrm{H}), 5.68(1 \mathrm{H}, \mathrm{dd}, J 6.0$ and $15.1,7-\mathrm{H}), 6.08(1 \mathrm{H}$, dd, $J 11.1$ and $11.8,3-\mathrm{H}), 6.12(1 \mathrm{H}, \mathrm{dd}, J 10.9$ and $14.8,5-\mathrm{H}), 6.28$ $(1 \mathrm{H}, \mathrm{dd}, J 10.8$ and $15.1,6-\mathrm{H})$ and $6.73(1 \mathrm{H}, \mathrm{dd}, J 11.8$ and 14.7, $4-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 13.91(\mathrm{C}-16), 15.21\left(\mathrm{OCH}_{2}-\right.$ CH_{3}), 22.58 (C-15), 27.41 (C-12), 29.32 (C-13), 31.47 (C-14), $35.53(\mathrm{C}-9), 59.85\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 71.31(\mathrm{C}-8), 97.93(\mathrm{C}-1), 124.87$ (C-10), 127.86 (C-4), 128.88 (C-2), 129.73 (C-6), 131.64 (C-3), $132.62(\mathrm{C}-11), 134.78$ (C-5) and $137.84(\mathrm{C}-7) ; m / z(\mathrm{EI}) 322\left(\mathrm{M}^{+}\right.$, 3%), 277 (100), 259 (7), 233 (9), 211 (68), 181 (90), 155 (21), 138 (74), 110 (92), 92 (81) and 51 (70) (Found: C, 74.63; H, 10.66. $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3}$ requires C, $74.49 ; \mathrm{H}, 10.63 \%$).

(2Z,4E,6E,)-1,1-Diethoxyhexadeca-2,4,6-trien-8-ol 14b

According to the procedure described for the preparation of compound 14a, from ($1 E, 3 E, 5 Z$)-1-bromo-7,7- diethoxyhepta-1,3,5-triene $4(0.38 \mathrm{~g}, 1.46 \mathrm{mmol})$ and a solution of nonanal $\mathbf{6 b}$ $(4.00 \mathrm{~g})$ in dry $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ we isolated and identified, after silica gel column chromatography [pentane- $\mathrm{Et}_{2} \mathrm{O} 80: 20(\mathrm{v} / \mathrm{v})$], compound 14b $(0.37 \mathrm{~g}, 78 \%)$ as a yellow oil, $v_{\max } / \mathrm{cm}^{-1} 3463$, 2926, 1642, 1465, 1355, 1142 and $980 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.90$ $\left(3 \mathrm{H}, \mathrm{t}, J 6.9,16-\mathrm{H}_{3}\right), 1.12\left(6 \mathrm{H}, \mathrm{t}, J 7.1,2 \times \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.41$ $\left(14 \mathrm{H}, \mathrm{m}, 9-15-\mathrm{H}_{2}\right), 2.54(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.43\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $3.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.06(1 \mathrm{H}, \mathrm{q}, J 6.3,8-\mathrm{H}), 5.39(1 \mathrm{H}, \mathrm{d}$, $J 5.9,1-\mathrm{H}), 5.60(1 \mathrm{H}$, dd, $J 5.9$ and $11.1,2-\mathrm{H}), 5.70(1 \mathrm{H}$, dd, $J 6.4$ and $14.8,7-\mathrm{H}), 6.10(1 \mathrm{H}, \mathrm{dd}, J 11.0$ and $11.9,3-\mathrm{H}), 6.13$ $(1 \mathrm{H}, \mathrm{dd}, J 10.9$ and $14.7,5-\mathrm{H}), 6.28(1 \mathrm{H}, \mathrm{dd}, J 10.7$ and 14.9 , $6-\mathrm{H})$ and $6.75(1 \mathrm{H}, \mathrm{dd}, J 11.8$ and $14.5,4-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) 14.32(\mathrm{C}-16), 15.54\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 23.03,25.85,29.70$, $30.00,30.06,32.24,37.76(\mathrm{C}-9-15), 60.11\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 72.33$ (C-8), 98.22 (C-1), 128.09 (C-4), 129.18 (C-2), 129.88 (C-6), $132.00(\mathrm{C}-3), 135.19(\mathrm{C}-5)$ and $139.03(\mathrm{C}-7)$; $m / z(\mathrm{EI}) 324\left(\mathrm{M}^{+}\right.$, 2\%), 307 (10), 279 (46), 261 (10), 227 (11), 197 (6), 141 (10), 103 (100) and 85 (15) (Found: C, 74.18; H, 11.61. $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{3}$ requires C, 74.03; H, 11.18\%).

(2Z,4E,6E,10Z)-8-Hydroxyhexadeca-2,4,6,10-tetraenal 15a

At $0{ }^{\circ} \mathrm{C}$, aq. toluene- p-sulfonic acid (0.25 g in 2 mL) was added to ($2 Z, 4 E, 6 E, 10 Z$)-1,1-diethoxyhexadeca-2,4,6,10-tetraen-8-ol $14 \mathrm{a}(0.19 \mathrm{~g}, 0.59 \mathrm{mmol})$ in acetone $(10 \mathrm{~mL})$. The mixture was stirred for 45 min , washed with saturated aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. Evaporation of the dried $\left(\mathrm{MgSO}_{4}\right)$ solution gave crude compound $15 \mathrm{a}(0.14 \mathrm{~g}, 95 \%)$ as a yellow oil, $v_{\text {max }} / \mathrm{cm}^{-1} 3423,2945,2820,1672,1451,1124$ and $990 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.87\left(3 \mathrm{H}, \mathrm{t}, J 6.5,16-\mathrm{H}_{3}\right), 1.23-1.45$ $\left(7 \mathrm{H}, \mathrm{m}, 13-15-\mathrm{H}_{2}\right.$ and OH$), 2.02\left(2 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}_{2}\right), 2.30(2 \mathrm{H}, \mathrm{m}$, $\left.9-\mathrm{H}_{2}\right), 4.06(1 \mathrm{H}, \mathrm{q}, J 6.0,8-\mathrm{H}), 5.53(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}$ and $11-\mathrm{H})$, $5.69(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.4$ and $11.0,2-\mathrm{H}), 6.09(1 \mathrm{H}, \mathrm{dd}, J 11.0$ and 14.5 , $5-\mathrm{H}), 6.07(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $7-\mathrm{H}), 6.35(1 \mathrm{H}, \mathrm{t}, J 11.3,3-\mathrm{H}), 6.82$ $(1 \mathrm{H}, \mathrm{dd}, J 11.3$ and $14.4,4-\mathrm{H})$ and $9.92(1 \mathrm{H}, \mathrm{d}, J 7.3,1-\mathrm{H})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 14.05(\mathrm{C}-16), 17.43(\mathrm{C}-15), 22.27(\mathrm{C}-12)$, 24.16 (C-13), 26.32 (C-14), 30.25 (C-9), 66.05 (C-8), 122.53 (C-10), 124.56 (C-2), 127.27 (C-7 or C-6), 128.06 (C-7 or C-6), 136.10 (C-11), 136.60 (C-5), 140.37 (C-3), 145.21 (C-4) and 186.93 (C-1).

(2Z,4E,6E)-8-Hydroxyhexadeca-2,4,6-trienal 15b

In the same manner as described for the preparation of $\mathbf{1 5 a}$, from (2Z,4E,6E)-1,1-diethoxyhexadeca-2,4,6-trien-8-ol 14b $(0.27 \mathrm{~g}, 0.84 \mathrm{mmol})$ we isolated and identified crude $(2 Z, 4 E$, $6 E)$-8-hydroxyhexadeca-2,4,6-trien 15b ($0.21 \mathrm{~g}, 100 \%$) as a yellow oil, $v_{\text {max }} / \mathrm{cm}^{-1} 3408,2924,2854,1668,1462,1134$ and $1010 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.90\left(3 \mathrm{H}, \mathrm{t}, J 6.2,16-\mathrm{H}_{3}\right), 1.26(15 \mathrm{H}$, $\mathrm{m}, 9-15-\mathrm{H}_{2}$ and OH$), 3.92(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 5.61(1 \mathrm{H}, \mathrm{dd}, J 6.7$ and $10.8,2-\mathrm{H}), 5.65(1 \mathrm{H}, \mathrm{dd}, J 11.2$ and $13.8,5-\mathrm{H}), 6.07(2 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H}$ and $7-\mathrm{H}), 6.29(1 \mathrm{H}, \mathrm{t}, J 11.2,3-\mathrm{H}), 6.81(1 \mathrm{H}, \mathrm{dd}, J 11.2$ and $14.2,4-\mathrm{H})$ and $9.95(1 \mathrm{H}, \mathrm{d}, J 7.1,1-\mathrm{H}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 14.28$
(C-16), 23.06, 25.73, 29.70, 30.01, 32.24, 37.64 (C-9-15), 71.94 (C-8), 126.03 (C-2), 127.06 (C-7 or C-6), 128.76 (C-6 or C-7), 141.64 (C-5), 142.95 (C-3), 145.77 (C-4) and 189.22 (C-1).

Methyl ($6 Z, 8 E, 10 E$)-5,12-dihydroxyeicosa-6,8,10-trienoate 2: LTB_{3} methyl esters

Under argon, a solution of $\mathrm{Bu}^{t} \mathrm{Li}(4 \mathrm{~mL}$ of a 1.67 M solution in pentane; 6.68 mmol) was added to a solution of methyl 4-bromoorthobutanoate ${ }^{18}(0.84 \mathrm{~g}, 3.70 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}$ (10 mL), cooled to $-75^{\circ} \mathrm{C}$. The reaction mixture was stirred for 90 min and a solution of compound $\mathbf{1 5 b}(0.23 \mathrm{~g}, 0.93 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was introduced. The reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 2 h , before treatment with aq. $\mathrm{CH}_{3} \mathrm{COOH}(5 \% \mathrm{w} / \mathrm{v}$; 5 mL$)$ and was then washed with water $(5 \mathrm{~mL})$. After extraction with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. By silica gel column chromatography [pentane- $\mathrm{Et}_{2} \mathrm{O} 30: 70(\mathrm{v} / \mathrm{v})$] we isolated and identified the LTB_{3} methyl esters $2(0.17 \mathrm{~g}, 52 \%)$ as a colourless oil. The analyses of LTB_{3} methyl esters 2 were identical with those previously described in the case of the sample obtained from 7 b in the first manner.

References

1 (a) P. Borgeat, M. Hamberg and B. Samuelson, J. Biol. Chem., 1976, 251, 7816; (b) P. Borgeat and B. Samuelson, J. Biol. Chem., 1979, 254, 7865; (c) P. Borgeat and B. Samuelson, Proc. Natl. Acad. Sci. USA, 1979, 76, 3213; (d) O. Radmark, C. Malmsten, B. Samuelson, G. Goto, A. Marfat and E. J. Corey, J. Biol. Chem., 1980, 255, 11828; (e) E. J. Corey, J. O. Albright, A. E. Barton and S. I. Hashimoto, J. Am. Chem. Soc., 1980, 102, 1435; (f) P. J. Piper, Physiol. Rev., 1984, 64, 744; (g) B. Samuelson, S. E. Dahlen, J. A. Lindgren, C. A. Rouzer and C. N. Serhan, Science, 1987, 237, 1171.

2 (a) P. Borgeat and B. Samuelson, J. Biol. Chem., 1979, 254, 2643; (b) T. Shimizu, O. Radmark and B. Samuelson, Proc. Natl. Acad. Sci. USA, 1984, 81, 89; (c) A. Wong, M. N. Cook, J. J. Foley, H. M. Saran, P. Marshall and S. M. Hwang, Biochemistry, 1991, 30, 9346; (d) D. K. MacMillan, E. Hill, A. Sala, E. Sigal, T. Shuman, P. M. Henson and R. C. Murphy, J. Biol. Chem., 1994, 269, 26663.

3 (a) A. W. Ford-Hutchinson, M. A. Bray, M. V. Doig, M. E. Shipley and M. J. Smith, Nature, 1980, 286, 264; (b) P. Borgeat and P. Sirois, J. Med. Chem., 1981, 24, 121.

4 (a) E. J. Goetzl, New Engl. J. Med., 1980, 303, 822; (b) P. M. Simmons and S. Moncado, Biochem. Pharmacol., 1983, 32, 1353.
5 (a) M. Rola-Pleszczynski and P. Sirois, Biochem. Biophys. Res. Commun., 1982, 102, 1531; (b) D. G. Payan, A. Missirian-Bastian and E. J. Goetzl, Proc. Natl. Acad. Sci. USA, 1984, 81, 1531.
6 (a) S. Hammarström, J. Biol. Chem., 1980, 255, 7093; (b) S. Hammarström, J. Biol. Chem., 1981, 256, 2275; (c) S. Hammarström, Biochim. Biophys. Acta, 1981, 663, 575; (d) L.

Orning, K. Berström and S. Hammarström, Eur. J. Biochem., 1981, 120, 41.
7 (a) B. A. Jackschik, A. R. Morrison and H. Sprecher, J. Biol. Chem., 1983, 258, 12797; (b) W. F. Stenson, S. M. Prescott and H. Sprecher, J. Biol. Chem., 1984, 259, 11784; (c) J. Evans, R. Zamboni, D. Nathaniel, C. Leveille and A. W. Ford-Hutchinson, Prostaglandins, 1985, 30, 981.
8 (a) E. J. Corey, A. Marfat, G. Goto and F. Brion, J. Am. Chem. Soc., 1980, 102, 7984; (b) Y. Guindon, R. Zamboni, C. K. Lau and J. Rokach, Tetrahedron Lett., 1982, 23, 739; (c) L. S. Mills and P. C. North, Tetrahedron Lett., 1983, 24, 409; (d) K. C. Nicolaou, R. E. Zipkin, R. E. Dolle and B. D. Harris, J. Am. Chem. Soc., 1984, 106, 3548; (e) Y. Le Merrer, C. Gravier, D. MicasLanguin and J. C. Depezay, Tetrahedron Lett., 1986, 27, 4161; (f) Y. Leblanc, B. J. Fitzsimmons, R. Zamboni and J. Rokach, J. Org. Chem., 1988, 53, 265; (g) Y. Le Merrer, C. Gravier-Pelletier, D. Languin-Micas, F. Mestre, A. Duréault and J. C. Depezay, J. Org. Chem., 1989, 54, 2409; (h) Y. Kobayashi, T. Shimazaki, H. Taguchi and F. Sato, J. Org. Chem., 1990, 55, 5324; (i) M. Avignon-Tropis, M. Treilhou, J. R. Pougny, I. Fréchard-Ortuno and G. Linstrumelle, Tetrahedron, 1991, 47, 7279; (j) D. Chemin and G. Linstrumelle, Tetrahedron, 1992, 48, 1943; (k) B. C. Borer and R. J. K. Taylor, Synlett, 1992, 117; (l) G. Solladié, A. Urbano and G. B. Stone, Tetrahedron Lett., 1993, 34, 6489; (m) A. Rodriguez, M. Nomen, B. W. Spur, J. J. Godfroid and T. H. Lee, Tetrahedron, 2001, 57, 25 and references cited therein.
9 (a) S. M. Roberts, B. J. Wakefield, J. A. Winders and H. G. Davies, J. Chem. Soc., Chem. Commun., 1985, 1166; (b) B. Spur, A. Crea, W. Peters and W. König, Arch. Pharm. (Weinheim, Ger.), 1985, 318, 225; (c) D. Guillerm and G. Linstrumelle, Tetrahedron Lett., 1986, 27, 5857; (d) I. C. Cotterill, G. Dorman, K. Faber, R. Jaouhari, S. M. Roberts, F. Scheinmann, J. Spreitz, A. G. Sutherland, J. A. Winders and B. J. Wakefield, J. Chem. Soc., Chem. Commun., 1990, 1661; (e) F. Babudri, V. Fiandanese, O. Hassan, A. Punzi and F. Naso, Tetrahedron, 1998, 54, 4327.

10 (a) D. Soullez, G. Plé, L. Duhamel and P. Duhamel, J. Chem. Soc., Chem. Commun., 1995, 563; (b) D. Soullez, G. Plé and L. Duhamel, J. Chem. Soc., Perkin Trans. 1, 1997, 1639; (c) N. Vicart, D. Castet-Caillabet, Y. Ramondenc, G. Plé and L. Duhamel, Synlett, 1998, 411; (d) D. Castet-Caillabet, Y. Ramondenc, G. Plé and L. Duhamel, Tetrahedron, 1999, 55, 7583.
11 D. Castet-Caillabet, PhD Thesis, University of Rouen, 2000.
12 C. Gauthier, PhD Thesis, University of Rouen, 2000.
13 P. Villiers, N. Vicart, Y. Ramondenc and G. Plé, Eur. J. Org. Chem., 2001, 561.
14 (a) D. B. Dess and J. C. Martin, J. Am. Chem. Soc., 1991, 113, 7277; (b) R. E. Ireland and L. Liu, J. Org. Chem., 1993, 58, 2899; (c) D. Hamprecht, K. Polborn and W. Steglich, Angew. Chem., Int. Ed. Engl., 1995, 34, 1314.
15 M. Huckstep, R. J. K. Taylor and M. P. L. Caton, Synthesis, 1982, 881.

16 H. J. Bestmann, K. Roth and M. Ettlinger, Chem. Ber., 1982, 115, 161.

17 S. Trippett and D. Walker, J. Chem. Soc., 1961, 1266.
18 (a) B. C. Borer and R. J. K. Taylor, Synlett, 1990, 601; (b) G. Casy, J. W. Patterson and R. J. K. Taylor, Org. Synth., 1988, 67, 193.

